S2DB-mmWave YOLOv8n: Multi-object detection for millimeter-wave radar using YOLOv8n with optimized multi-scale features
Mengqi Yuan,
Yajing Yuan,
Xiangqun Zhang,
Zhenghao Zhu,
Chenxi Zhao,
Xiangqian Gao and
Genyuan Du
PLOS ONE, 2025, vol. 20, issue 9, 1-20
Abstract:
Millimeter-wave (mmWave) radar has become an important research direction in the field of object detection because of its characteristics of all-time, low cost, strong privacy and not affected by harsh weather conditions. Therefore, the research on millimeter wave radar object detection is of great practical significance for applications in the field of intelligent security and transportation. However, in the multi-target detection scene, millimeter wave radar still faces some problems, such as unable to effectively distinguish multiple objects and poor performance of detection algorithm. Focusing on the above problems, a new target detection and classification framework of S2DB-mmWave YOLOv8n, based on deep learning, is proposed to realize more accuracy. There are three main improvements. First, a novel backbone network was designed by incorporating new convolutional layers and the Simplified Spatial Pyramid Pooling - Fast (SimSPPF) module to strengthen feature extraction. Second, a dynamic up-sampling technique was introduced to improve the model’s ability to recover fine details. Finally, a bidirectional feature pyramid network (BiFPN) was integrated to optimize feature fusion, leveraging a bidirectional information transfer mechanism and an adaptive feature selection strategy. A publicly available 5-class object mmWave radar heatmap dataset, including 2,500 annotated images, were selected for data modeling and method evaluation. The results show that the mean average precision (mAP), precision and recall of the S2DB-mmWave YOLOv8n model were 93.1% mAP@0.5, 55.8% mAP@0.5:0.95, 89.4% and 90.6%, respectively, which is 3.3, 1.6, 4.5 and 7.7 percentage points higher than the baseline YOLOv8n network without increasing the parameter count.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0332931 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32931&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0332931
DOI: 10.1371/journal.pone.0332931
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().