Adaptive and migration-enhanced tree seed algorithm for multi-threshold CT image segmentation and lung cancer recognition
Chenxi Li,
Jianhua Jiang,
Zhixing Ma,
Zhilong Yu,
Hao Li,
Jiayi Liu,
Lingna Li and
Zhenhao Yu
PLOS ONE, 2026, vol. 21, issue 1, 1-49
Abstract:
The Tree-Seed Algorithm (TSA) is a swarm intelligence algorithm inspired by the propagation relationship between trees and seeds. However, the original TSA is prone to premature convergence and becomes trapped in local optima when addressing high-dimensional, complex optimization problems, limiting its practical efficacy. To overcome these limitations, this paper proposes an Adaptive and Migration-enhanced Tree Seed Algorithm (AMTSA), which integrates three key mechanisms to significantly enhance performance in solving complex optimization tasks. First, to effectively evade local optima, an adaptive tree migration mechanism is designed to dynamically adjust the search step-size and direction based on individual fitness, thereby improving global exploration. Second, to enhance the algorithm’s adaptability and efficiency across different search stages, an adaptive seed generation strategy based on the dynamic Weibull distribution is introduced. This strategy enables flexible control over the number of seeds and promotes a balanced search throughout the solution space. Third, to mitigate convergence oscillations during the global search, a nonlinear step-size adjustment function inspired by the GBO algorithm is incorporated, which effectively improves convergence stability by responding to the iteration progress. Rigorous testing on the IEEE CEC 2014 benchmark functions demonstrates that AMTSA’s overall performance surpasses not only state-of-the-art optimizers like JADE and LSHADE but also recent TSA variants, including STSA, fb-TSA, and MTSA. To further validate its robustness in high-dimensional spaces, AMTSA was tested on 30 benchmark functions at 30, 50, and 100 dimensions. Results show that AMTSA ranked first in the number of functions optimized best and exhibited the fastest convergence speed among all compared algorithms. In a real-world application, AMTSA was employed to optimize multi-threshold segmentation for lung cancer CT images. The resulting AMTSA-SVM classification model achieved an accuracy of 89.5%, significantly outperforming models such as standard SVM (76.22%), DE-SVM (82%), GA-SVM (79.33%), TSA-SVM (84.44%), and JADE-SVM (89.12%). In conclusion, the proposed AMTSA, by integrating adaptive migration, dynamic seed generation, and nonlinear step-size control, successfully addresses the inherent deficiencies of the native TSA, offering a more efficient and robust tool for solving high-dimensional, complex optimization problems. The AMTSA source code will be available at www.jianhuajiang.com.
Date: 2026
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0333304 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33304&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0333304
DOI: 10.1371/journal.pone.0333304
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().