Revisiting inference for ARMA models: Improved fits and superior confidence intervals
Jesse Wheeler and
Edward L Ionides
PLOS ONE, 2025, vol. 20, issue 10, 1-19
Abstract:
Autoregressive moving average (ARMA) models are widely used for analyzing time series data. However, standard likelihood-based inference methodology for ARMA models has avoidable limitations. We show that currently accepted standards for ARMA likelihood maximization frequently lead to sub-optimal parameter estimates. Existing algorithms have theoretical support, but can result in parameter estimates that correspond to a local optimum. While this possibility has been previously identified, it remains unknown to most users, and no routinely applicable algorithm has been developed to resolve the issue. We introduce a novel random initialization algorithm, designed to take advantage of the structure of the ARMA likelihood function, which overcomes these optimization problems. Additionally, we show that profile likelihoods provide superior confidence intervals to those based on the Fisher information matrix. The efficacy of the proposed methodology is demonstrated through a data analysis example and a series of simulation studies. This work makes a significant contribution to statistical practice by identifying and resolving under-recognized shortcomings of existing procedures that frequently arise in scientific and industrial applications.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0333993 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33993&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0333993
DOI: 10.1371/journal.pone.0333993
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().