EconPapers    
Economics at your fingertips  
 

Gyroscope-constrained magnetometer PDR/Wi-Fi indoor positioning algorithm

Ruiyi Tang and Chengkai Tian

PLOS ONE, 2025, vol. 20, issue 10, 1-20

Abstract: To address the issue of low precision in sensor data measured by smartphones, we propose a gyroscope-constrained magnetometer Pedestrian Dead Reckoning (PDR)/Wi-Fi indoor positioning algorithm, focusing on improving the PDR heading angle. We utilize the heading angle constrained by the gyroscope and magnetometer and enhance fingerprint data using Kriging interpolation, effectively doubling the signal fingerprint density. We combine the optimized PDR algorithm and Wi-Fi fingerprint positioning results through an Extended Kalman Filter. Experimental results show that the traditional PDR algorithm has an average positioning error of 2.02 meters, with 90% of errors below 3.71 meters. The improved PDR algorithm reduces the average positioning error to 1.07 meters, with 90% of errors below 2.12 meters. Integrating Wi-Fi and the improved PDR algorithm further reduces the average positioning error to 0.71 meters, with 90% of errors below 1.42 meters.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0335277 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35277&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0335277

DOI: 10.1371/journal.pone.0335277

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-11-01
Handle: RePEc:plo:pone00:0335277