EconPapers    
Economics at your fingertips  
 

Machine learning based fault classification for improved induction motor performance

Zawar Ahmed Khan, Muhammad Amir Raza, Muhammad I Masud, Touqeer Ahmed Jumani, Muhammad Faheem and Mohammed Aman

PLOS ONE, 2025, vol. 20, issue 11, 1-28

Abstract: This study explores the design of an effective fault classification algorithm for 3 phase induction motor, an integral unit in many industrial systems. It is found that traditional fault detection methods and deep learning approaches are both effective; however, current techniques can either be computationally exhaustive, or suffer from low accuracy, thus making them inapplicable in many real-world settings. To address these limitations, this study evaluates different machine learning algorithms for accurate and efficient fault detection using a dataset of triaxial vibrational data converted into current variables. A dataset of triaxial vibrational current data at 0.7 mm bearing and rotor faults at various loads (100W, 200W, and 300W) were considered. For the data preprocessing, we handled with the missing values by interpolation and handle data imbalance fault types with Synthetic Minority Over-sampling Technique (SMOTE). Through Fast Fourier Transform (FFT) techniques, the frequency domain information were extracted, which is key for current signals, adding to the feature set. In addition, dimensionality reduction with Principal Component Analysis (PCA) and feature selection was done with SelectKBest. Then, the different machine learning models such as Random Forest (RF), Decision Tree (DT), k-nearest neighbors (KNN), and eXtreme Gradient Boosting (XGBoost) was trained to optimize the hyperparameters and make them perform to its best possible. The results shows the accuracy and performance of all models, DT and RF show good performance, with 99.95% accuracy, while KNN performs well, but at a higher computational cost in testing. Generally known for its capability to handle all the complex dataset, XGBoost wasn’t able to perform in this scenario as it got an accuracy of 87.13%, indicating potentially more optimization is required for the model. This work serves as the groundwork for future work with a multiplicity of fault types, motor specifications, and the incorporation of additional feature-engineering techniques to develop a more robust and intelligent framework for fault detection.

Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0335367 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35367&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0335367

DOI: 10.1371/journal.pone.0335367

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-12-06
Handle: RePEc:plo:pone00:0335367