Research on vehicle lateral stability control under low-adhesion road conditions using proximal policy optimization algorithm
Honglei Pang,
He Huang,
Yangping Fan,
Lei Yao and
Yong Chen
PLOS ONE, 2025, vol. 20, issue 11, 1-26
Abstract:
Vehicle lateral stability control under hazardous operating conditions represents a pivotal challenge in intelligent driving active safety. To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. Firstly, high-fidelity models of electromechanical braking (EMB) and steer-by-wire (SBW) systems are constructed in Amesim by leveraging their dynamic characteristics, while a full-vehicle dynamics model is developed in CarSim. The dynamic accuracy of the drive-by-wire system is verified through input-output tracking analysis. Next, vehicle stability is analyzed using vehicle dynamics models to optimize reinforcement learning control variables. This involves designing a continuous state space and action space that incorporate vehicle states and road surface parameters. A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. Training is conducted via an Amesim-CarSim-Python co-simulation platform for emergency braking scenarios on split-μ roads, low-adhesion surfaces, and curved roads. Results show that, compared to Model Predictive Control (MPC) and Sliding Mode Control (SMC), the PPO algorithm reduces braking distance by 15–20% on low-adhesion roads, decreases lateral deviation by 25–30% on split-μ roads, and suppresses yaw rate oscillation by 28.8% on curved roads. Hardware-in-the-loop (HIL) validation confirms the algorithm’s robustness under extreme conditions, with lateral stability metrics maintained within safety thresholds.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0335686 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35686&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0335686
DOI: 10.1371/journal.pone.0335686
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().