EconPapers    
Economics at your fingertips  
 

Random rotational embedding Bayesian optimization for human-in-the-loop personalized music generation

Miguel Marcos, Lorenzo Mur-Labadia and Ruben Martinez-Cantin

PLOS ONE, 2025, vol. 20, issue 11, 1-27

Abstract: Generative deep learning models, such as those used for music generation, can produce a wide variety of results based on perturbations of random points in their latent space. User preferences can be incorporated in the generative process by replacing this random sampling with a personalized query. Bayesian optimization, a sample-efficient nonlinear optimization method, is the gold standard for human-in-the-loop optimization problems, such as finding this query. In this paper, we present random rotational embedding Bayesian optimization (ROMBO). This novel method can efficiently sample and optimize high-dimensional spaces with rotational symmetries, like the Gaussian latent spaces found in generative models. ROMBO works by embedding a low-dimensional Gaussian search space into a high-dimensional one through random rotations. Our method outperforms several baselines, including other high-dimensional Bayesian optimization variants. We evaluate our algorithm through a music generation task. Our evaluation includes both simulated experiments and real user feedback. Our results show that ROMBO can perform efficient personalization of a generative deep learning model. The main contributions of our paper are: we introduce a novel embedding strategy for Bayesian optimization in high-dimensional Gaussian sample spaces; achieve a consistently better performance throughout optimization with respect to baselines, with a final loss reduction of 16%-31% in simulation; and complement our simulated evaluations with a study with human volunteers (n = 16). Users working with our music generation pipeline find new favorite pieces 40% more often, 16% faster, and spend 18% less time on pieces they dislike than when randomly querying the model. These results, along with a final survey, demonstrate great performance and satisfaction, even among users with particular tastes.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0335853 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35853&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0335853

DOI: 10.1371/journal.pone.0335853

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-11-29
Handle: RePEc:plo:pone00:0335853