MBCS: A few-shot intent detection model for manual inspection records
Mengjie Liao,
Yixin Wang,
Jian Zhang,
Bo Li and
Zhenlong Wan
PLOS ONE, 2025, vol. 20, issue 12, 1-21
Abstract:
Addressing the bottleneck issue of low accuracy and poor generalization in cargo risk intent detection caused by annotation scarcity in manual inspection scenarios within the import-export trade supervision domain, this study proposes an intent detection model named MBCS (Multi-task Learning with BERT for Classification and Semantic Similarity Comparison), designed for few-shot scenarios. To tackle the challenges of scarce domain-specific data and inadequate text representation capabilities, the research introduces a multi-task learning framework that integrates text classification with semantic similarity comparison. By incorporating semantic contrastive learning as an auxiliary task, the model’s semantic representation capability is enhanced. Concurrently, an attention-weight-based synonym substitution strategy was introduced, replacing the highest-attention words in the sequence by integrating contextual information. Experiments conducted on real-world customs business datasets demonstrate that MBCS achieves significant accuracy improvements of over 4.19% (4.91%) in 5-shot (10-shot) scenarios, substantially outperforming baseline models. This method provides an optimized solution for intent detection tasks plagued by the annotation scarcity dilemma.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0335914 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35914&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0335914
DOI: 10.1371/journal.pone.0335914
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().