EconPapers    
Economics at your fingertips  
 

MRI-based 2.5D deep learning and radiomics effectively predicted microvascular invasion and Ki-67 expression in hepatocellular carcinoma

Hongmei Yu, Depeng Kong, Xiaojun Mo, Ju Huang, Jie Wu, Yang Wang and Feizhou Du

PLOS ONE, 2025, vol. 20, issue 11, 1-18

Abstract: Objective: To develop and validate an integrated 2.5D deep learning (DL) and Radiomics model using gadoxetic acid-enhanced MRI hepatobiliary phase (HBP) images combined with clinical features for preoperative prediction of microvascular invasion (MVI) and high Ki-67 expression (>20%) dual positivity in hepatocellular carcinoma (HCC). Methods: This retrospective study included 235 pathologically confirmed HCC patients categorized as MVI/Ki-67 double-positive (n = 129) or non-double-positive (n = 106). Clinical data (tumor diameter, AFP, GGT, differentiation grade, etc.) and HBP MRI images were collected. Tumor ROIs were segmented on HBP images. A 2.5D DL approach utilized axial, sagittal, and coronal planes of the largest tumor cross-section. LASSO regression selected key features from clinical, radiomic, and DL feature sets. Multivariate logistic regression identified independent predictors, and a nomogram was built. Model performance was evaluated via ROC curves, calibration plots, DCA, confusion matrices, and waterfall plots. Assessment of early recurrence within 2 years after HCC surgery was performed using alpha-fetoprotein (AFP) levels and imaging examinations. Results: Significant intergroup differences existed in tumor diameter, AFP, GGT, and differentiation grade (P

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0336579 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36579&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0336579

DOI: 10.1371/journal.pone.0336579

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-11-16
Handle: RePEc:plo:pone00:0336579