A legal judgment prediction model based on knowledge fusion and dependency masking
Yishan Chen,
Xiaoyi Zhu,
Zhiyun Zeng,
Pengfei Wang and
Xinhua Zhu
PLOS ONE, 2026, vol. 21, issue 1, 1-20
Abstract:
Legal Judgment Prediction (LJP) is a core task in Legal AI systems, which aims to predict law articles, charges, and term-of-penalty from case facts. While existing deep-learning-based LJP approaches for civil law systems have achieved certain progress, they still suffer from two key limitations: (1) insufficient deep understanding and effective utilization of external judicial knowledge; and (2) the lack of effective strategies to filter out erroneous dependency information in multi-task LJP frameworks. To address these challenges, we propose a legal judgment prediction model based on knowledge fusion and dependency masking. Specifically, we first integrate a CNN-based local semantic refinement component into the existing BERT-based legal knowledge extraction method, thereby enabling the model to further extract the core knowledge embedded in judicial documents. Then, we introduce differential attention to reduce noise in conventional attention fusion methods and help the model locate key information in case facts more accurately. Furthermore, we propose a multi-task dependency information masking mechanism to accurately identify and filter erroneous dependency information for multi-task LJP methods. Experiments conducted on real-world datasets demonstrate the superiority of our proposed model. This code is available online at https://github.com/PaperCode-GNU/KFTM.
Date: 2026
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0340717 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40717&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0340717
DOI: 10.1371/journal.pone.0340717
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().