Bayesian analysis in the case of an estimated parameter following a stochastic process
Lev Slutskin
Applied Econometrics, 2010, vol. 20, issue 4, 119-131
Abstract:
We perform Bayesian analysis of the sequence of unknown means mi given observations Xi under the assumption that, for any k > 0, the first k members X1, X2, …, Xk are normally distributed with the mean (m1,…, mk ) and a known covariance matrix. It is assumed that the parameters m1,…, mk,… follow a Gaussian process We prove that, for any fixed k, the covariance matrices of marginal posterior distributions converge In the case of a Gaussian AR(1) process analytic expression for the asymptotic posterior structure is given
Keywords: asymptotic covariance matrix; Bayes’ rule; Gaussian process; marginal posterior distribution (search for similar items in EconPapers)
JEL-codes: C11 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://pe.cemi.rssi.ru/pe_2010_4_119-131.pdf Full text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ris:apltrx:0069
Access Statistics for this article
Applied Econometrics is currently edited by Anatoly Peresetsky
More articles in Applied Econometrics from Russian Presidential Academy of National Economy and Public Administration (RANEPA)
Bibliographic data for series maintained by Anatoly Peresetsky ().