EconPapers    
Economics at your fingertips  
 

BVAR mapping

Boris Demeshev and Oxana Malakhovskaya

Applied Econometrics, 2016, vol. 43, 118-141

Abstract: This paper reviews estimation and forecasting with Bayesian vector autoregressions (BVARs). In the first part of the paper, we propose a clear classification of the most frequently used prior distributions and we show how the parameters of posterior distributions can be computed for the priors we consider in the paper. A separate section describes the endogenous choice of prior hyperparameters that is currently a key step to estimate a BVAR in a data-rich environment. The second part of this paper is devoted to forecasting with BVARs. We review both point and density forecasting.

Keywords: BVAR; prior distributions; point forecasting; density forecasting (search for similar items in EconPapers)
JEL-codes: C11 C32 C53 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://pe.cemi.rssi.ru/pe_2016_43_118-141.pdf Full text (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ris:apltrx:0300

Access Statistics for this article

Applied Econometrics is currently edited by Anatoly Peresetsky

More articles in Applied Econometrics from Russian Presidential Academy of National Economy and Public Administration (RANEPA)
Bibliographic data for series maintained by Anatoly Peresetsky ().

 
Page updated 2025-03-19
Handle: RePEc:ris:apltrx:0300