Measuring heterogeneity with fixed effect quantile regression: Long panels and short panels
Galina Besstremyannaya and
Sergei Golovan ()
Additional contact information
Sergei Golovan: New Economic School, Moscow;
Applied Econometrics, 2021, vol. 64, 70-82
Abstract:
he desire to capture heterogeneity in the response of the dependent variable to covariates often forces empiricists to employ panel data quantile regression models. Very often practitioners forget the limitations of their datasets in terms of the sample size n and the length of panel T. Yet, quantile regression requires large samples, long panels and small value of the ratio n/T. So the estimator in quantile regression with short panels is biased. The paper reviews the approaches for estimating longitudinal models for quantile regression. We highlight the fact that a method of smoothed quantile regression may be viewed as a remedy for reducing the asymptotic bias of the estimator in short panels, both in case of quantile-dependent and quantile-independent fixed effect specifications.
Keywords: quantile regression; panel data (search for similar items in EconPapers)
JEL-codes: C44 C61 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://pe.cemi.rssi.ru/pe_2021_64_070-082.pdf Full text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ris:apltrx:0433
Access Statistics for this article
Applied Econometrics is currently edited by Anatoly Peresetsky
More articles in Applied Econometrics from Russian Presidential Academy of National Economy and Public Administration (RANEPA)
Bibliographic data for series maintained by Anatoly Peresetsky ().