Previsão do consumo de energia elétrica na região Sudeste: aplicação de modelos ARIMA e LSTM
Forecasting electricity consumption in the southeast region: Application of ARIMA and LSTM models
Iago Gomes Gonçalves
Additional contact information
Iago Gomes Gonçalves: Universidade Federal de Viçosa
Revista Brasileira de Estudos Regionais e Urbanos, 2025, vol. 19, issue 3, 310-340
Abstract:
The objective of this study is to forecast electricity consumption in the Southeast region of Brazil from April 2023 to March 2024 using ARIMA models and LSTM neural networks. Using monthly data from 2002 to 2023, the research compares the models based on the error metrics RMSE, EAM, and MAPE. The ARIMA model captures seasonal and linear patterns in the short term, while the LSTM model excels in predicting nonlinear and long-term trends. The combination of the two approaches has shown promise in improving forecasting accuracy, suggesting that policymakers can have reasonable expectations about future projections. This research contributes methodologically by exploring complementary approaches, and a practical contribution to efficient energy planning, based on more assertive short-term forecasts, which allow for the safe operation of the electricity system, reducing the risk of overloads and interruptions in energy supply.
O objetivo deste estudo é prever o consumo de energia elétrica na região Sudeste do Brasil, de abril de 2023 a março de 2024, utilizando modelos ARIMA e redes neurais LSTM. Utilizando dados mensais de 2002 a 2023, a pesquisa compara os modelos com base nas métricas de erro RMSE, EAM e MAPE. O modelo ARIMA captura padrões sazonais e lineares no curto prazo, enquanto o modelo LSTM se destaca na previsão de tendências não lineares e de longo prazo. A combinação das duas abordagens se mostrou promissora para aumentar a precisão das previsões, indicando que os formuladores de políticas podem criar expectativas razoáveis quanto às projeções futuras. Esta pesquisa contribui metodologicamente ao explorar abordagens complementares e, em termos práticos, contribui para um planejamento energético eficiente, baseado em previsões de curto prazo mais assertivas, que permitem a operação segura do sistema elétrico, reduzindo o risco de sobrecargas e interrupções no fornecimento de energia.
Keywords: Economia da energia; Energy economics; ARIMA; LSTM (search for similar items in EconPapers)
JEL-codes: C22 Q47 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://revistaaber.org.br/rberu/article/view/1158/473
None
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ris:rberur:021924
DOI: 10.54766/rberu.v19i3.1158
Access Statistics for this article
Revista Brasileira de Estudos Regionais e Urbanos is currently edited by Edson Paulo Domingues
More articles in Revista Brasileira de Estudos Regionais e Urbanos from Associação Brasileira de Estudos Regionais e Urbanos (ABER) Contact information at EDIRC.
Bibliographic data for series maintained by Edson Paulo Domingues ().