EconPapers    
Economics at your fingertips  
 

Measuring the error of dynamic hedging: a Laplace transform approach

Flavio Angelini and Stefano Herzel

Journal of Computational Finance

Abstract: ABSTRACT Using the Laplace transform approach, we compute expected value and variance of the error of a hedging strategy for a contingent claim when trading in discrete time. The method applies to a fairly general class of models, including Black-Scholes, Merton's jump-diffusion and normal inverse Gaussian, and to several interesting strategies, such as the Black-Scholes delta, the Wilmott's improved-delta and the locally risk-minimizing strategy. The formulas obtained are valid for any fixed number of trading dates, whereas all previous results are asymptotic approximations. They can also be employed under model misspecification, to measure the influence of model risk on a hedging strategy.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... e-transform-approach (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160394

Access Statistics for this article

More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ0:2160394