Computing tails of compound distributions using direct numerical integration
Xiaolin Luo and
Pavel V. Shevchenko
Journal of Computational Finance
Abstract:
ABSTRACT An efficient adaptive direct numerical integration (DNI) algorithm is developed for computing high quantiles and conditional Value at Risk (VaR) of compound distributions using characteristic functions. A key innovation of the numerical scheme is an effective tail integration approximation that reduces the truncation errors significantly with little extra effort. High precision results of the 0.999 quantile and conditional VaR were obtained for compound losses with heavy tails and a very wide range of loss frequencies using the DNI, fast Fourier transform (FFT) and Monte Carlo methods. These results, particularly relevant to operational risk modeling, can serve as benchmarks for comparing different numerical methods. We found that the adaptive DNI can achieve high accuracy with relatively coarse grids. It is much faster than Monte Carlo and competitive with FFT in computing high quantiles and conditional VaR of compound distributions in the case of moderate to high frequencies and heavy tails.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... umerical-integration (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160427
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().