EconPapers    
Economics at your fingertips  
 

A general dimension reduction technique for derivative pricing

Junichi Imai and Ken Seng Tan

Journal of Computational Finance

Abstract: ABSTRACT For a trajectory simulated from s standardized independent normal variates ε = (ε1, . . . , εs )1, the payoff of a European option can be represented as max[g(ε), 0], where the function g(ε) is assumed to be differentiable and it relates to the nature of the derivative securities. In this paper, we develop a new simulation technique by introducing an orthogonal class of transformation to ε so that the function g is instead generated from g(Aε), where A is an s-dimensional orthogonal matrix. The matrix A is optimally determined so that the effective dimension of the underlying function is minimized, thereby enhancing the quasi-Monte Carlo (QMC) method. The proposed simulation approach has the advantage of greater generality and has a wide range of applications as long as the problem of interest can be represented by g(ε). The flexibility of our proposed technique is illustrated by applying it to two high-dimensional applications: Asian basket options and European call options with a stochastic volatility model. We benchmark our proposed method against well-known efficient simulation algorithms that have been advocated in these applications. The numerical results demonstrate that our proposed technique can be an extremely powerful simulation method when combined with QMC.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... r-derivative-pricing (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160430

Access Statistics for this article

More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-22
Handle: RePEc:rsk:journ0:2160430