Speed and accuracy comparison of bivariate normal distribution approximations for option pricing
Senay Agca and
Don M. Chance
Journal of Computational Finance
Abstract:
ABSTRACT Pricing compound and min–max options requires approximation of the bivariate normal probability. We compare the performance of five analytical approximation methods for bivariate normal probabilities used in the computation of compound and min–max options against an externally tested benchmark of Simpson numerical integration. Each of the methods is very accurate with all probability errors less than 10–6 and the average probability error less than 10–7. The maximum error in an option price calculation is US$0.01, the average error is less than 2.0 × 10–4, and an error of as large as US$0.01 is rare. The Divgi method is the most accurate method for compound options, and the Owen method is the most accurate for min–max options. The Drezner–Wesolowsky method performs well in terms of accuracy and best in terms of speed. No single method emerges as the best overall, though the more widely cited Drezner method is consistently the least accurate, as well as the second slowest method.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... s-for-option-pricing (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160463
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().