A Bayesian approach for constructing implied volatility surfaces through neural networks
M. Avellaneda,
A. Carelli and
F. Stella
Journal of Computational Finance
Abstract:
ABSTRACT In this paper the authors present a new option pricing scheme which deals with a nonconstant volatility for the price of the underlying asset. The main feature of the proposed pricing scheme consists of exploiting recent developments about Bayesian learning within the artificial neural networks framework. Indeed, the Bayesian learning aproach allows the data to speak for itself, i.e., to make a few general assumptions about the process to be modeled and to exploit all the available data concerning the price of traded options for modeling the implied volatility surface. The nonparametric model of the implied volatility surface, obtained through an infinite feedforward neural network and by exploiting the Bayesian formulation of the learning problem, is used within the proposed option pricing scheme. This pricing scheme relies upon the Dupire formula, which maps the implied volatility surface to the corresponding local volatility function. Numerical experiments for the case of the USD/DM over-the-counter options are presented together with a graphical analysis of the resulting smiles which attest to the effectiveness of the overall approach to option pricing.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... ough-neural-networks (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160506
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().