EconPapers    
Economics at your fingertips  
 

A non-Gaussian stochastic volatility model

Yuichi Nagahara and Genshiro Kitagawa

Journal of Computational Finance

Abstract: ABSTRACT A non-Gaussian stochastic volatility model is proposed in this paper. The model assumes that the time series is distributed as a Pearson type-VII distribution. The scale parameter of the distribution, which corresponds to the volatility of the process, is stochastic and is described by an autoregressive model with a constant term. Since the Pearson type-VII distribution can represent a broad class of distributions, including the normal distribution and t-distribution, the proposed model can be considered as a natural extension of the ordinary stochastic volatility model. For estimating the parameters of the stochastic volatility model, we apply a non-Gaussian filter. The model can be further generalized to the case where the shape parameter of the Pearson type-VII distribution is also time-varying. The usefulness of the model is demonstrated by the analysis of stock-return data, which suggests the relevance of the model to managing financial market risk.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-computational-finance ... tic-volatility-model (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2160561

Access Statistics for this article

More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ0:2160561