Pricing high-dimensional Bermudan options using variance-reduced Monte Carlo methods
Peter Hepperger
Journal of Computational Finance
Abstract:
ABSTRACT A numerical method for pricing Bermudan options depending on a large number of underlyings is presented. The asset prices are modeled with exponential time-inhomogeneous jump-diffusion processes. We improve the least-squares Monte Carlo method proposed by Longstaff and Schwartz, introducing an efficient variance-reduction scheme. A control variable is obtained from a low-dimensional approximation of the multivariate Bermudan option. To this end, we adapt a model reduction method called proper orthogonal decomposition (POD), which is closely related to principal component analysis, to the case of Bermudan options. Our goal is to make use of the correlation structure of the assets in an optimal way. We compute the expectation of the control variable either by solving a low-dimensional partial integro-differential equation or by applying Fourier methods. The POD approximation can also be used as a candidate for the minimizing martingale in the dual pricing approach suggested by Rogers.We evaluate both approaches in numerical experiments. ;
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... -monte-carlo-methods (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2253221
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().