Value function approximation or stopping time approximation: a comparison of two recent numerical methods for American option pricing using simulation and regression
Lars Stentoft
Journal of Computational Finance
Abstract:
ABSTRACT In their 2001 paper, Longstaff and Schwartz suggested a method for American option pricing using simulation and regression, and since then this method has rapidly gained importance. However, the idea of using regression and simulation for American option pricing was used at least as early as 1996, by Carriere. In this paper, we provide a thorough comparison of these two methods and relate them to the work of Tsitsiklis and Van Roy. Although the methods are often considered to be similar, this analysis allows us to point out an important but often overlooked difference between them. We further show that, due to this difference, it is possible to provide arguments favoring the method of Longstaff and Schwartz. Finally, we compare the methods in a realistic numerical setting and show that practitioners would do well to choose the method of Longstaff and Schwartz instead of the methods of Carriere or Tsitsiklis and Van Roy for American option pricing.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... ation-and-regression (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2364554
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().