An efficient Monte Carlo method for discrete variance contracts
Nicolas Merener and Leonardo Vicchi
Journal of Computational Finance
Abstract:
ABSTRACT We develop an efficient Monte Carlo method for the valuation of financial contracts on discretely realized variance.We work with a general stochastic volatility model that makes realized variance dependent on the full path of the asset price. The variance contract price is a high-dimensional integral over the fundamental sources of randomness. We identify a two-dimensional manifold that drives most of the uncertainty in realized variance, and we compute the contract price by combining precise integration over this manifold, implemented as fine stratification or deterministic sampling with quasirandom numbers, with conditional Monte Carlo on the remaining dimensions. For a subclass of models and a class of nonlinear payoffs, we derive approximate theoretical results that quantify the variance reduction achieved by our method. Numerical tests for the discretized versions of the widely used Hull-White and Heston models show that the algorithm performs significantly better than a standard Monte Carlo, even for fixed computational budgets.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... e-variance-contracts (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:2397220
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().