EconPapers    
Economics at your fingertips  
 

Hybrid finite-difference/pseudospectral methods for the Heston and Heston–Hull–White partial differential equations

Christian Hendricks, Matthias Ehrhardt and Michael Günther

Journal of Computational Finance

Abstract: We propose a hybrid spatial finite-difference/pseudospectral discretization for European option-pricing problems under the Heston and Heston–Hull–White models. In the direction of the underlying asset, where the payoff profile is nonsmooth, we use a standard central second-order finite-difference scheme, whereas we use a Chebyshev collocation method in the other spatial dimensions. In the time domain, we employ alternating direction implicit schemes to efficiently decompose the system matrix into simpler one-dimensional problems. This approach allows us to compute numerical solutions, which are second-order accurate in time and exhibit spectral accuracy in the spatial domains except for the asset direction. The numerical experiments reveal that the proposed scheme outperforms the standard second-order finite-difference scheme in terms of accuracy versus runtime and shows an unconditionally stable behavior.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... fferential-equations (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:5529741

Access Statistics for this article

More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ0:5529741