Finding the nearest covariance matrix: the foreign exchange market case
Aleksey Minabutdinov,
Ilya Manaev and
Maxim Bouev
Journal of Computational Finance
Abstract:
We consider the problem of finding a valid covariance matrix in the foreign exchange market given an initial nonpositively semidefinite (non-PSD) estimate of such a matrix. The common no-arbitrage assumption imposes additional linear constraints on such matrixes, inevitably making them singular. As a result, even the most advanced numerical techniques will predictably balk at a seemingly standard optimization task. The reason is that the problem is ill posed, while its PSD solution is not strictly feasible. In order to deal with this issue we describe a low-dimensional face of the PSD cone that contains the feasible set. After projecting the initial problem onto this face, we come out with a reduced problem, which is both well posed and of a smaller scale. We show that, after solving the reduced problem, the solution to the initial problem can be recovered uniquely in one step. We run numerous numerical experiments to compare the performance of different algorithms in solving the reduced problem and to demonstrate the advantages of dealing with the reduced problem as opposed to the original one. The smaller scale of the reduced problem implies that its solution can effectively be found by the application of virtually any numerical method.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... exchange-market-case (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:7714011
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().