Numerical techniques for the Heston collocated volatility model
Fabien Le Floc’h and
Cornelis W. Oosterlee
Journal of Computational Finance
Abstract:
In the collocating volatility (CLV) model, the stochastic collocation technique is used as a convenient representation of the terminal distribution of the market option prices. A specific dynamic is added in the form of a stochastic driver process, which allows more control over the prices of forward starting options. This is reminiscent of the Markov functional models. (Grzelak uses a single-factor Ornstein–Uhlenbeck process as the driver for the CLV model, and Fries uses a single-factor Wiener process with time-dependent volatility in his equity Markov functional model. Van der Stoep et al consider a Heston stochastic volatility driver process and show that it offers more flexibility to capture the forward smile in the context of foreign exchange options.) In this paper, we discuss all aspects of derivative pricing under the Heston– CLV model: calibration with an efficient Fourier method; a Monte Carlo simulation with second-order convergence; and accurate partial differential equation pricing through implicit and explicit finite-difference methods.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-computational-fina ... ted-volatility-model (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ0:7729116
Access Statistics for this article
More articles in Journal of Computational Finance from Journal of Computational Finance
Bibliographic data for series maintained by Thomas Paine ().