Computing the credit loss distribution in the Gaussian copula model: a comparison of methods
Paul Glasserman and
Jesus Ruiz-Mata
Journal of Credit Risk
Abstract:
ABSTRACT This paper compares methods for computing the distribution of loss from defaults in a credit portfolio. The methods are applied in the Gaussian copula framework for credit risk and take advantage of the conditional independence of defaults in this framework. As a benchmark we use vanilla Monte Carlo simulation to estimate the tail probabilities of the total losses of the credit portfolio. The first method to be compared is a recursive algorithm to obtain the exact distribution of the total loss of the portfolio, conditional on observed values for the systematic risk factors. Then, we apply the saddlepoint approximation to the distribution of the losses, which has proven to give very accurate approximations in the tail. Finally, the method of numerically inverting the Laplace transform of the tail distribution of the losses of the credit portfolio, conditional on observed systematic risk factors, is combined with Euler summation to obtain an approximation. We compare and rank these methods in terms of mean square errors for a fixed computing time. Perhaps surprisingly, we find that vanilla Monte Carlo is hard to beat.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-credit-risk/216059 ... omparison-of-methods (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:2160596
Access Statistics for this article
More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine ().