Dependent credit migrations
Alexander J. McNeil and
Jonathan P. Wendin
Journal of Credit Risk
Abstract:
ABSTRACT This paper examines latent risk factors in models for credit migration risk. We employ the standard statistical framework for ordered, categorical variables and induce dependence between migrations by means of latent risk factors. By assuming a Markov process for the dynamics of the latent factors, the model can be interpreted as a state-space model for the time series of migrations. The paper contains an empirical study of quarterly migration data from Standard & Poor’s for the years 1981–2000, in which the ordered logit model with serially correlated latent factors is fitted by computational Bayesian techniques (Gibbs sampling). Apart from highlighting the usefulness of the Gibbs sampler for statistical inference in models of this kind, the survey investigates in particular the issues of rating-specific factor loadings and heterogeneity among industry sectors, with emphasis on their implications for implied asset correlation values.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-credit-risk/2160599/dependent-credit-migrations (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:2160599
Access Statistics for this article
More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine ().