On the estimation of credit exposures using regression-based Monte Carlo simulation
Robert Schöftner
Journal of Credit Risk
Abstract:
ABSTRACT In this paper we tackle one of the problems that arises in the broad area of credit risk management. We seek a scenario consistent way of modeling the future credit exposure of complex products that do not admit an analytical (closedform) solution. We present a technique for calculating future credit exposures that relies on least squares Monte Carlo simulation. Whereas the pricing of instruments is done under the risk-neutral probability measure used in frontoffice pricing models, the dynamical evolution of future prices should be captured using the historical (physical) probability measure used for risk management objectives. Therefore, we extend existing least squares Monte Carlo approaches used for pricing purposes to allow for modeling of future credit exposures. We apply the established technique to several product examples (such as American options, convertible bonds, cancelable interest rate swaps and variance swaps) and benchmark the algorithm to products that allow closed-form representations.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-credit-risk/216074 ... nte-carlo-simulation (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:2160744
Access Statistics for this article
More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine ().