EconPapers    
Economics at your fingertips  
 

A clusterized copula-based probability distribution of a counting variable for high-dimensional problems

Enrico Bernardi and Silvia Romagnoli

Journal of Credit Risk

Abstract: ABSTRACT We propose a novel approach for the computation of the probability distribution of a counting variable linked to a particular kind of hierarchical multivariate copula function called a clusterized homogeneous copula. Here, the problem considered is very complex in a high-dimensional setting. As is common practice for large-dimensional problems, we restrict ourselves to positive orthant dependence and we define that copula on clusterized data, allowing us to reduce the dimension of the problem. This approach approximates a multivariate distribution function of heterogenous variables with a distribution of a fixed number of homogeneous clusters, organized through a clustering method as proposed in a 2011 paper by the authors. To compute the probability density function of the counting variable linked to a clusterized homogeneous copula, we propose an algorithm, implemented in Matlab code. We compare this probability density function with that computed through the Panjer recursion approach and the limiting Gaussian and Archimedean approaches, which are commonly used for high-dimensional problems. The scalability of the algorithm is also studied. As an application, we study the problem of evaluating the distribution of losses related to the default of various types of counterparty in a credit risk exposed portfolio.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-credit-risk/227547 ... dimensional-problems (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:2275476

Access Statistics for this article

More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ1:2275476