Counting processes for retail default modeling
Nicholas M. Kiefer and C. Erik Larson
Journal of Credit Risk
Abstract:
ABSTRACT Counting processes provide a very flexible framework for modeling discrete events that occur over time. Estimation and interpretation are easy, and links to more familiar approaches are at hand. The key is to think of data as "event history", a record of times of switching between states in a discrete state space. In a simple case, the states could be default/nondefault. In other models relevant to credit modeling, the states could be credit scores or payment statuses (30 days past due (dpd), 60 dpd, etc). Here, we focus on the use of stochastic counting processes for mortgage default modeling, using data on high loan-to-value mortgages. Borrowers seeking to finance more than 80% of a house's value with a mortgage usually either purchase mortgage insurance (MI), allowing a first mortgage greater than 80% from many lenders, or use second mortgages. Are there differences in performance between loans financed by these different methods? We address this question in the counting process framework. In fact, MI is associated with lower default rates for both fixed- and adjustable-rate first mortgages.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-credit-risk/2421085/c ... ail-default-modeling (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:2421085
Access Statistics for this article
More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine (maintainer@infopro-digital.com).