EconPapers    
Economics at your fingertips  
 

The impact of data aggregation and risk attributes on stress testing models of mortgage default

Feng Li and Yan Zhang

Journal of Credit Risk

Abstract: Stress testing models have been developed at various levels of data aggregation with or without risk attributes, but there is limited research on the joint impact of these modeling choices. In this paper, we investigate how data aggregation and risk attributes affect the development and performance of stress testing models by studying residential mortgage loan defaults. We develop mortgage default models at various data aggregation levels, including loan level, segment level and top-down. We also compare models with and without risk attributes as control variables. We assess model performance for goodness-of-fit, prediction accuracy and projection sensitivity for stress testing purposes. We find that loan-level models do not always win among models with various data aggregation levels, and including risk attributes greatly improves goodness-of-fit and projection accuracy for models of all data aggregation levels. These findings suggest that it is important to consider data aggregation and risk attributes when developing stress testing models.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-credit-risk/771229 ... -of-mortgage-default (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ1:7712296

Access Statistics for this article

More articles in Journal of Credit Risk from Journal of Credit Risk
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ1:7712296