EconPapers    
Economics at your fingertips  
 

Quantification of operational risk: statistical insights on coherent risk measures

Dany Ng Cheong Vee, Preethee Nunkoo Gonpot and Thekke Variyam Ramanathan

Journal of Operational Risk

Abstract: Operational risk is becoming a major part of corporate governance in companies, especially in the financial services industry. In this paper, we review some of the existing methods used to quantify operational risks in the banking and insurance industries. These methods use recent statistical concepts such as extreme value theory and copula modeling. We explore the possibility of using a coherent risk mea- sure – expected shortfall (ES) – to quantify operational risk. The suitability of the suggested risk measures has been investigated with the help of simulated data sets for two business lines. The generalized Pareto distribution is used for modeling the tails, and three distributions – lognormal, Weibull and Gamma – are used for the body data. Our results show that ES under all three distributions tends to be significantly larger than value-at-risk, which may lead to overestimating the operational loss and consequently overestimating the capital charge. However, the modified ES seems to provide a better way of mitigating any overestimation.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-operational-risk/6 ... herent-risk-measures (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ3:6726526

Access Statistics for this article

More articles in Journal of Operational Risk from Journal of Operational Risk
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ3:6726526