EconPapers    
Economics at your fingertips  
 

Selecting an innovation distribution for Garch models to improve efficiency of risk and volatility estimation

J. H.Venter and P. J. de Jongh

Journal of Risk

Abstract: ABSTRACT It has become common practice to fit Garch models to financial time series by means of pseudo-maximum likelihood. In this study we investigate the behavior of several maximum likelihood-based methods for estimating the Garch model parameters and for estimating volatility and risk measures (VAR and expected shortfall). We consider normal inverse Gaussian (NIG), skewed-T, T and non-parametric kernel densities for this purpose and compare the efficiencies of the resulting estimates with those based on the normal distribution. The NIG-based approach is found to be competitive with the other methods in most of the cases considered.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-risk/2161092/selec ... olatility-estimation (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ4:2161092

Access Statistics for this article

More articles in Journal of Risk from Journal of Risk
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-19
Handle: RePEc:rsk:journ4:2161092