EconPapers    
Economics at your fingertips  
 

Does higher-frequency data always help to predict longer-horizon volatility?

Ben Charoenwong and Guanhao Feng ()

Journal of Risk

Abstract: When it comes to forecasting long-horizon volatility, multistep-ahead iterated forecasts using higher-frequency data can be more efficient than one-step-ahead direct forecasts using lower-frequency data. However, small violations of model specification in either the volatility or expected return models are compounded in the forward iteration and temporal aggregation for the higher-frequency model. In this paper, we show that realized conditional autocorrelation in return residuals is a strong predictor of the relative performance of different frequency models of volatility. When the conditional autocorrelation is high, the higher-frequency model performs markedly worse than its lower-frequency counterpart. Empirically, we show that residual autocorrelation exists in the broad cross-section of stocks at any given point in time, and that this misspecification can substantially decrease the prediction performance of higher-frequency models. Comparing the monthly volatility predictions using daily and monthly data, we show a trade-off between the gains from higher-frequency data and the susceptibility of its multistep-ahead iterated forecasts to model misspecification.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-risk/5264146/does- ... r-horizon-volatility (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ4:5264146

Access Statistics for this article

More articles in Journal of Risk from Journal of Risk
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-22
Handle: RePEc:rsk:journ4:5264146