Making Cornish–Fisher fit for risk measurement
John D. Lamb,
Maura E. Monville and
Kai-Hong Tee
Journal of Risk
Abstract:
The truncated Cornish–Fisher inverse expansion is well known and has been used to approximate value-at-risk (VaR) and conditional value-at-risk (CVaR). The following are also known: the expansion is available only for a limited range of skewnesses and kurtoses, and the distribution approximation it gives is poor for larger values of skewness and kurtosis. We develop a computational method to find a unique, corrected Cornish–Fisher distribution efficiently for a wide range of skewnesses and kurtoses. We show that it has a unimodal density and a quantile function which is twice-continuously differentiable as a function of mean, variance, skewness and kurtosis. We extend the univariate distribution to a multivariate Cornish–Fisher distribution and show that it can be used together with estimation-error reduction methods to improve risk estimation. We show how to test the goodness-of-fit. We apply the Cornish–Fisher distribution to fit hedge-fund returns and estimate CVaR. We conclude that the Cornish–Fisher distribution is useful in estimating risk, especially in the multivariate case where we must deal with estimation error.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-risk/6747096/makin ... for-risk-measurement (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ4:6747096
Access Statistics for this article
More articles in Journal of Risk from Journal of Risk
Bibliographic data for series maintained by Thomas Paine ().