Standard errors of risk and performance estimators for serially dependent returns
Xin Chen and
R. Douglas Martin
Journal of Risk
Abstract:
In this paper, a new method for computing the standard errors (SEs) of returns-based risk and performance estimators for serially dependent returns is developed. The method uses both the fact that any such estimator can be represented as the mean of returns that are transformed using the estimator’s influence function (IF), and the fact that the variance of such a sum can be estimated by estimating the zero-frequency value of the spectral density of the IF transformed returns. The spectral density is estimated by fitting a polynomial to the periodogram using a generalized linear model for exponential distributions, with elastic net regularization. We study the use of the new SEs method with and without prewhitening. Applications to computing the SE of Sharpe ratio (SR) estimators for a collection of hedge funds, whose returns have varying degrees of serial dependence, show that the new methods are a considerable improvement on SE methods based on assumed independent and identically distributed returns, and that the prewhitening version performs better than the one without prewhitening. Monte Carlo simulations are conducted to study (i) the mean-squared error performance of the SE methods for a number of commonly used risk and performance estimators for first-order autoregression and GARCH(1,1) returns models; and (ii) the SR confidence interval error rate performance for first-order autoregression models with normal and t-distribution innovations. The results show that our new method is a considerable improvement on both earlier frequency domain methods and the Newey–West heteroscedasticity and autocorrelation consistent (HAC) SE method.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-risk/7729106/stand ... ly-dependent-returns (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ4:7729106
Access Statistics for this article
More articles in Journal of Risk from Journal of Risk
Bibliographic data for series maintained by Thomas Paine ().