Nonparametric estimation of systemic risk via conditional value-at-risk
Ahmed Belhad,
Davide Lauria and
A. Alexandre Trindade
Journal of Risk
Abstract:
Two forms of CoVaR have recently been introduced in the literature for measuring systemic risk, differing on whether or not the conditioning is on a set of measure zero. We focus on the former, and make allusions to the possibility of analogous results holding for the latter. After reviewing maximum likelihood estimation (MLE) and quantile regression methods, we introduce four new nonparametric estimators that are applicable given a bivariate random sample. Three of these employ results on concomitants of order statistics, while the fourth is novel in the way it uses saddlepoint approximations to invert the empirical (bivariate) moment generating function in order to recover the conditional distribution. All estimators are shown to be consistent under mild regularity conditions, and asymptotic normality is established for the saddlepoint-based estimator using M-estimation arguments. Simulations shed light on the quality of the finite-sample-based estimators, and the methodology is illustrated on a real data set. One surprising result to emerge is that, in spite of its asymptotic optimality, the MLE does not always dominate the remaining estimators in terms of basic accuracy measures such as absolute relative error. This finding may have important implications for practitioners seeking to make accurate CoVaR inferences.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-risk/7955082/nonpa ... tional-value-at-risk (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ4:7955082
Access Statistics for this article
More articles in Journal of Risk from Journal of Risk
Bibliographic data for series maintained by Thomas Paine (maintainer@infopro-digital.com).