Scientific stochastic volatility models for the European energy market: forecasting and extracting conditional volatility
Kai Erik Dahlen and Per Bjarte Solibakke
Journal of Risk Model Validation
Abstract:
ABSTRACT This paper builds and implements a multifactor stochastic volatility model for the latent (and unobservable) volatility of the baseload and peakload forward contracts at the European Energy Exchange AG, applying Bayesian Markov chain Monte Carlo simulation methodologies for estimation, inference and model adequacy assessment. Stochastic volatility is the main way time-varying volatility is modeled in financial markets. The main objective is therefore to structure a scientific model that specifies volatility as having its own stochastic process. Appropriate stochastic model descriptions broaden the applications into derivative pricing purposes, risk management, asset allocation and portfolio management. From an estimated optimal and appropriate stochastic volatility model, the paper reports risk and portfolio measures, extracts conditional one-step-ahead moments (smoothing), forecasts (filtering) one-step-ahead conditional volatility, evaluates shocks from conditional variance functions, analyzes multi-step-ahead dynamics and calculates conditional persistence measures. The analysis adds insight and enables forecasts to be made, building up the methodology for developing valid scientific commodity market models.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-risk-model-validat ... nditional-volatility (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ5:2229488
Access Statistics for this article
More articles in Journal of Risk Model Validation from Journal of Risk Model Validation
Bibliographic data for series maintained by Thomas Paine ().