Credit scoring optimization using the area under the curve
Anne Kraus and Helmut Küchenhoff
Journal of Risk Model Validation
Abstract:
ABSTRACT In consumer credit scoring, the area under the receiver operating characteristic curve (AUC) is one of the most commonly used measures for evaluating predictive performance. In our analysis, we aim to explore different methods for optimizing the scoring problem in order to maximize the AUC. Not only are the existing methods pertaining to the use of the AUC to measure prediction accuracy evaluated, but the AUC is introduced as an objective function to optimize prediction accuracy directly. For the AUC approach, the coefficients are estimated by calculating the AUC measure using the Wilcoxon-Mann-Whitney and Nelder-Mead algorithms. In a simulation study, we compare our new method to the logit model using different measures for predictive performance. The simulation study indicates the superiority of the AUC approach in cases where the logistic model assumption fails. From machine learning we explore boosting methods by additionally using the AUC as a loss function. Our evaluation of German retail credit data includes different performance measures and shows superior results in terms of the prediction accuracy of the boosting algorithms as well as the AUC approach compared with the most widely used logistic regression model.
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.risk.net/journal-of-risk-model-validat ... area-under-the-curve (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ5:2335491
Access Statistics for this article
More articles in Journal of Risk Model Validation from Journal of Risk Model Validation
Bibliographic data for series maintained by Thomas Paine ().