EconPapers    
Economics at your fingertips  
 

What can we learn from what a machine has learned? Interpreting credit risk machine learning models

Nehalkumar Bharodia and Wei Chen

Journal of Risk Model Validation

Abstract: For being able to analyze unstructured and alternative data, machine learning algorithms are gaining popularity in financial risk management. Alongside the technological advances in learning power and the digitalization of society, new financial technologies are also leading to more innovation in the business of lending. However, machine learning models are often viewed as lacking in terms of transparency and interpretability, which hinders model validation and prevents business users from adopting these models in practice. In this paper, we study a few popular machine learning models using LendingClub loan data, and judge these on performance and interpretability. Our study independently shows LendingClub has sound risk assessment. The findings and techniques used in this paper can be extended to other models.

References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.risk.net/journal-of-risk-model-validat ... hine-learning-models (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rsk:journ5:7856781

Access Statistics for this article

More articles in Journal of Risk Model Validation from Journal of Risk Model Validation
Bibliographic data for series maintained by Thomas Paine ().

 
Page updated 2025-03-22
Handle: RePEc:rsk:journ5:7856781