A Laplace type problem for regular lattices with circular section obstacles
D. Barilla,
A. Puglisi,
E. Saitta,
A. Femino and
B. Toader
Additional contact information
D. Barilla: Universitatea din Messina
A. Puglisi: Universitatea din Messina
E. Saitta: Universitatea din Messina
A. Femino: Universitatea din Messina
B. Toader: Universitatea Crestina “Dimitrie Cantemir”
Romanian Statistical Review, 2013, vol. 61, issue 11, 53-60
Abstract:
In this paper, we compute the probability that a segment of random position and of constant length intersects a side of a regular lattice with circular sections obstacles. In particular, we obtain the formula of a probability already computed by Caristi and Stoka, as well as the formula of the Laplace probability. The results can be used for possible applications in economy and engineering, in particular for transportation problems.
Keywords: geometric probability; integral geometry; random convex sets; random sets; stochastic geometry (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.revistadestatistica.ro/wp-content/uploa ... RS_11_2013_A4_en.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rsr:journl:v:61:y:2013:i:11:p:53-60
Access Statistics for this article
More articles in Romanian Statistical Review from Romanian Statistical Review Contact information at EDIRC.
Bibliographic data for series maintained by Adrian Visoiu ().