Signals of Public Opinion in Online Communication
Sandra González-Bailón and
Georgios Paltoglou
The ANNALS of the American Academy of Political and Social Science, 2015, vol. 659, issue 1, 95-107
Abstract:
This study offers a systematic comparison of automated content analysis tools. The ability of different lexicons to correctly identify affective tone (e.g., positive vs. negative) is assessed in different social media environments. Our comparisons examine the reliability and validity of publicly available, off-the-shelf classifiers. We use datasets from a range of online sources that vary in the diversity and formality of the language used, and we apply different classifiers to extract information about the affective tone in these datasets. We first measure agreement (reliability test) and then compare their classifications with the benchmark of human coding (validity test). Our analyses show that validity and reliability vary with the formality and diversity of the text; we also show that ready-to-use methods leave much space for improvement when analyzing domain-specific content and that a machine-learning approach offers more accurate predictions across communication domains.
Keywords: content analysis; text mining; sentiment analysis; language formality; information diversity; lexicon-based methods; machine learning (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0002716215569192 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:anname:v:659:y:2015:i:1:p:95-107
DOI: 10.1177/0002716215569192
Access Statistics for this article
More articles in The ANNALS of the American Academy of Political and Social Science
Bibliographic data for series maintained by SAGE Publications ().