One Price Fits All? On Inefficient Siting Incentives for Wind Power Expansion in Germany under Uniform Pricing
Lukas Schmidt and
Jonas Zinke
The Energy Journal, 2023, vol. 44, issue 4, 21-52
Abstract:
This paper evaluates investment incentives for wind power under two market designs: uniform and nodal pricing. An electricity system model is developed, that allows for investments in wind power capacities while carefully accounting for static transmission grid constraints. Wind power capacities are assumed to reach the same expansion target by 2030 under both market designs. The results show that the introduction of nodal prices leads to investments in wind power plants shifting to locations with lower wind yield. The amount of electricity fed into the grid from wind power plants, however, is higher under nodal pricing as curtailment is reduced by two-thirds. Furthermore, grid-optimal wind locations are shown to require higher direct subsidy payments but decrease yearly variable supply costs by 1.5% in 2030. Yet distributional effects present an obstacle to the introduction of a nodal pricing regime, with about 75% of German demand facing an increase in electricity costs of about 5%. To mitigate the distorted investment signals arising from uniform pricing regimes, restricting investments within grid expansion areas proves to be more promising than including latitude-dependent generator-component in the grid tariff design.
Keywords: Nodal pricing; Energy system modeling; Renewable energies; Market values (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.5547/01956574.44.4.lsch (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:enejou:v:44:y:2023:i:4:p:21-52
DOI: 10.5547/01956574.44.4.lsch
Access Statistics for this article
More articles in The Energy Journal
Bibliographic data for series maintained by SAGE Publications ().