Optimal design of aerodynamic force supplementary devices for the improvement of fuel consumption and emissions
Yaghoub Pourasad,
Amirhossein Ghanati and
Mehrdad Khosravi
Energy & Environment, 2017, vol. 28, issue 3, 263-282
Abstract:
One of the primary concerns in the automotive industry is energy saving, protecting the global environment and fuel consumption reduction. The main purpose of this study is to develop optimal supplementary parts for reduction of aerodynamic force of highway tractor and trailer combinations to reduce aerodynamic drag, without negatively affecting the usefulness or profitability of the vehicles. In this article, the possibility to improve the aerodynamic performance for boosting fuel economy of trucks is studied by optimal designing of supplementary devices. That will be carried out by using integrated computational fluid dynamic and genetic algorithm for simulation and geometry optimization of applied devices. Also, simulation results are verified by experimental results in wind tunnel. For this purpose, effects of various supplementary devices and configuration are added to space between cabin and cargo compartment to stabilize the vortex and decrease the drag resistance force. Finally, the geometry of appended device with considering the installation and packing conditions is optimized by using a genetic algorithm. Through the analysis of airflow contours and optimization procedure, results indicate that using two plates at the sidewalls of the gap with optimized length and installation angle can reach the maximum reduction of drag force and fuel consumption by 20 and 10%, respectively.
Keywords: Trailer; energy; emissions; computational fluid dynamics; genetic algorithm; fuel tank blade; drag reduction (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X16681686 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:28:y:2017:i:3:p:263-282
DOI: 10.1177/0958305X16681686
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().