EconPapers    
Economics at your fingertips  
 

Global warming: Sun and water

Harold J Blaauw

Energy & Environment, 2017, vol. 28, issue 4, 468-483

Abstract: This paper demonstrates that global warming can be explained without recourse to the greenhouse theory. This explanation is based on a simple model of the Earth's climate system consisting of three layers: the surface, a lower and an upper atmospheric layer. The distinction between the atmospheric layers rests on the assumption that the latent heat from the surface is set free in the lower atmospheric layer only. The varying solar irradiation constitutes the sole input driving the changes in the system's energy transfers. All variations in the energy exchanges can be expressed in terms of the temperature variations of the layers by means of an energy transfer matrix. It turns out that the latent heat transfer as a function of the temperatures of the surface and the lower layer makes this matrix next to singular. The near singularity reveals a considerable negative feedback in the model which can be identified as the ‘Klimaverstärker’ presumed by Vahrenholt and Lüning. By a suitable, yet realistic choice of the parameters appearing in the energy transfer matrix and of the effective heat capacities of the layers, the model reproduces the global warming: the calculated trend in the surface temperature agrees well with the observational data from AD 1750 up to AD 2000.

Keywords: Global warming; climate model; climate energetics; hydrological cycle; Klimaverstärker (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X17695276 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:28:y:2017:i:4:p:468-483

DOI: 10.1177/0958305X17695276

Access Statistics for this article

More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:engenv:v:28:y:2017:i:4:p:468-483