The environmental benefits of reducing thermal discharge from nuclear power generation
Seo-Hyeon Min,
Seul-Ye Lim and
Seung-Hoon Yoo ()
Energy & Environment, 2017, vol. 28, issue 8, 885-894
Abstract:
Thermal discharge emitted from the nuclear power plants located around coastal areas in order to acquire seawater for cooling has a negative impact on the marine environment and causes serious complaints from fishermen in Korea. This article tries to assess the environmental benefits of reducing thermal discharge through switching from nuclear power generation to combined heat and power (CHP) generation. Using a contingent valuation survey, we derive the additional willingness to pay (WTP) of 1000 households to switch the generation source from nuclear power to natural gas (NG)-based CHP in order to reduce the thermal discharge. We used the single-bounded dichotomous choice question to elicit WTP responses and employed the spike model to handle the zero WTP observations. The mean additional WTP for the switch is computed as KRW 63.9 (USD 0.06) per 1 kWh of electricity. This value has statistical significance at the 1% level and amounts to about 51% of the average price for electricity (KRW 125.1 or USD 0.1). This finding implies that the public are ready to shoulder a significant financial burden to reduce thermal discharge through switching from nuclear power to NG-based CHP. This value can be interpreted as an external cost of nuclear power or an external benefit of the switch in terms of reducing the thermal discharge.
Keywords: Combined heat and power; nuclear power; thermal discharge; contingent valuation; willingness to pay (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X17734049 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:28:y:2017:i:8:p:885-894
DOI: 10.1177/0958305X17734049
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().