EconPapers    
Economics at your fingertips  
 

Influence of organic loading rates on the production of methane from anaerobic digestion of sewage concentrate

Emmanuel Alepu Odey, Kaijun Wang, Zifu Li and Ruiling Gao

Energy & Environment, 2018, vol. 29, issue 7, 1130-1141

Abstract: This study investigated the efficiency of biogas production from sewage concentrate through anaerobic digestion. A continuous stirred tank reactor with a 900-mL working volume was used. The experiment was designed to investigate the influence of organic loading rate on the efficiency of biogas production and to determine the most suitable organic loading rate condition for methane production from sewage concentrate by using continuous stirred tank reactor. The reactor was operated at different organic loading rates of 1.8, 0.8, and 0.6 gCOD/(L.d). The methane composition of the biogas produced from the treatment organic loading rate (OLR). The beginning of the experiment recorded low methane production because of the high organic loading rate. However, the later part of the experiment recorded high and stable biogas production because of the relatively low OLR. Results suggested that a 0.6 gCOD/(L.d) OLR was the most efficient setup parameter for ideal methane production from sewage concentrate by using continuous stirred tank reactor.

Keywords: Sewage concentrate; anaerobic digestion; organic loading rate; continuous stirred tank reactor; biogas; methane (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X18769860 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:29:y:2018:i:7:p:1130-1141

DOI: 10.1177/0958305X18769860

Access Statistics for this article

More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:engenv:v:29:y:2018:i:7:p:1130-1141