Effect of complexing agents on desulphurization and deashing of coal by H2O2/H2SO4 leaching
Hafiza Sana,
Rizwan Haider,
Muhammad Usman Rahim and
Shahid Munir
Energy & Environment, 2018, vol. 29, issue 7, 1142-1154
Abstract:
The present study was aimed at investigating the effect of the addition of complexing agents on the removal efficiency of sulphur and ash contents during chemical leaching by acidified hydrogen peroxide. Representative coal sample from Lakhra was subjected to chemical leaching under various conditions of the parameters including time (60 and 120 min), temperature (25 and 50°C), complexing agents (citric acid and phosphoric acid) and the concentration of complexing agents (100 and 1000 ppm). The addition of complexing agents, i.e. citric acid and phosphoric acid imparted significant effects on improving the removal efficiency of sulphur and ash contents. Under optimized conditions, it was found out that the addition of citric acid improved the removal efficiency for sulphur from 63.88 to 83.47% and from 33.12 to 66.25% for ash. In case of phosphoric acid, the removal in sulphur and ash contents was increased from 63.77 to 80.77% and from 33.12 to 59.18%, respectively. Apparently, citric acid happened to be the most effective complexing agent, as compared to phosphoric acid. These results warrant subsequent detailed studies for further optimization of the process, including the use of some other complexing agents, as well.
Keywords: Complexing agents; demineralization; desulphuriztion; coal cleaning; chemical leaching (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X18769870 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:29:y:2018:i:7:p:1142-1154
DOI: 10.1177/0958305X18769870
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().