EconPapers    
Economics at your fingertips  
 

Prediction of performance and exhaust emissions of diesel engine fuelled with adulterated diesel: An artificial neural network assisted fuzzy-based topology optimization

Subrata Bhowmik, Rajsekhar Panua, Subrata K Ghosh, Abhishek Paul and Durbadal Debroy

Energy & Environment, 2018, vol. 29, issue 8, 1413-1437

Abstract: This study evaluates the effects of diesel fuel adulteration on the performance and exhaust emission characteristics of an existing diesel engine. Kerosene is added to diesel fuel in volumetric proportions of 5, 10, 15, and 20%. Adulterated fuel significantly reduced the oxides of nitrogen emissions of the engine. In view of the engine experimentations, artificial intelligence-based artificial neural network model has been developed to accurately predict the input–output relationships of the diesel engine under adulterated fuel. The investigation also attempts to explore the applicability of fuzzy logic in the selection of the network topology of artificial neural network model under adulterated fuel. A (2–7–5) topology is found to be optimal for predicting input parameters, namely load, diesel–kerosene blend and output parameters, namely brake thermal efficiency, brake-specific energy consumption, oxides of nitrogen, total hydrocarbon, carbon monoxide of the network. The developed artificial neural network model is enabled for predicting engine output responses with high accuracy. The regression coefficient (R) of 0.99887, mean square error of 1.5e-04 and mean absolute percentage error of 2.39% have been obtained from the plausible artificial neural network model.

Keywords: Adulteration; engine performance; engine exhaust emissions; artificial intelligence; artificial neural network; fuzzy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X18779576 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:29:y:2018:i:8:p:1413-1437

DOI: 10.1177/0958305X18779576

Access Statistics for this article

More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:engenv:v:29:y:2018:i:8:p:1413-1437